

• This Slideshow was developed to accompany the textbook

- Big Ideas Algebra 2
- By Larson, R., Boswell
- 2022 K12 (National Geographic/Cengage)
- Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy <u>rwright@andrews.edu</u>

 $\sqrt{9}\sqrt{-1} = 3i$

 $\sqrt{4}\sqrt{3}\sqrt{-1} \rightarrow 2\sqrt{3}i$

3-01 Complex Numbers (3.2)

• Adding and Subtracting Complex Numbers

- Add the same way you add (x + 4) + (2x 3) = 3x+1
- Combine like terms
- Simplify
 - (-1 + 2i) + (3 + 3i)
 - (2 3*i*) (3 7*i*)
 - 2i (3 + i) + (2 3i)
 - 2 + 5*i* -1 + 4*i* -1 - 2*i*

 $-3i - i^2 = -3i - (-1) = 1 - 3i$

 $-12 - 4i - 18i - 6i^2 = -12 - 22i - 6(-1) = -6 - 22i$

 $1 - 2i + 2i - 4i^2 = 1 - 4(-1) = 5$

3-01 Complex Numbers (3.2)

- Notice on the last example that the answer was just real
- **Complex conjugate** → same numbers just opposite sign on the imaginary part
 - When you multiply complex conjugates, the product is real

• Dividing Complex Numbers

- 1. To divide, multiply the numerator and denominator by the complex conjugate of the denominator
- 2. No imaginary numbers are allowed in the denominator when simplified

$$\frac{2-7i}{1+i} = \frac{(2-7i)(1-i)}{(1+i)(1-i)} = \frac{2-2i-7i+7i^2}{1-i+i-i^2} = \frac{2-9i+7(-1)}{1-(-1)} = \frac{-5-9i}{2}$$
$$= -\frac{5}{2} - \frac{9}{2}i$$
$$\frac{2i}{2-i} = \frac{2i(2+i)}{(2-i)(2+i)} = \frac{4i+2i^2}{4+2i-2i-i^2} = \frac{4i+2(-1)}{4-(-1)} = \frac{-2+4i}{5} = -\frac{2}{5} + \frac{4}{5}i$$

3-02 Solve Quadratic Equations by Factoring (3.1)

• Factor a Quadratic in the form of $ax^2 + bx + c$,

- 1. Factor out any common terms first, then factor what's left
- 2. Write two sets of parentheses like ()().
- 3. Guess: Find two expressions whose product is ax^2 and put them at the beginning of each set of parentheses.
- 4. Guess: Find two expressions whose product is *c* and put them at the end of each set of parentheses. Pay attention + and signs.
- 5. Check: Calculate the outers + inners and compare it to the middle *bx*.
 - a. If the outers + inners = *bx*, then the factoring is correct.
 - b. If the outers + inners = -bx (the correct number but wrong sign), then change the signs in the parentheses.
 Otherwise, retry with new guesses.

(x-6)(x+3)

Cannot be factored

(r + 9)(r - 7)

• Factor

• $14x^2 + 2x - 12$

13

 $2(7x^2 + x - 6) \rightarrow 2(7x - 6)(x + 1)$

3x(x - 6)

 $2(x^2 - 16) \rightarrow 2(x - 4)(x + 4)$

• Zero Product Property

3

- If $a \cdot b = 0$, then either *a* or *b* is 0.
- Solve a Quadratic Equation by Factoring
- 1. Make the quadratic expression equal 0.
- 2. Factor the quadratic expression.
- 3. Set each factor equal to zero as two separate equations.

-02 Solve Quadratic Equations by Factoring

- 4. Solve each equation.
- 5. Check your solutions

• Solve

• $x^2 - x - 42 = 0$

16

 $x^{2}-x-42 = 0 \rightarrow (x-7)(x+6) = 0 \rightarrow$ $x-7 = 0 \rightarrow x = 7$ $x+6 = 0 \rightarrow x = -6$ Solutions are x = -6, 7

• Solve

• $9t^2 - 12t + 4 = 0$

17

 $(3t-2)^2 = 0 \rightarrow 3t - 2 = 0 \rightarrow 3t = 2 \rightarrow t = 2/3$

Put in standard form

 $x^2 - 3x - 4 = 0$ (x-4)(x+1) = 0 $x - 4 = 0 \rightarrow x = 4$ $x + 1 = 0 \rightarrow x = -1$

3-03 Solve Quadratic Equations by Graphing and Finding Square Roots (3.1)

• Solving Quadratic Equations by

• Graphing

- 1. Make the equation equal zero.
- 2. Graph the equation.
- 3. Find the *x*-values of the *x*-intercepts.

• Square Roots

- 1. Solve for the squared expression.
- 2. Take a square root. Remember to put ±.
- 3. Finish solving for *x*.
- 4. Check your solutions.

Graph Solutions are x-intercepts x = 3, x = -1

$$2x^{2} + 14 = 70$$

$$2x^{2} = 56$$

$$x^{2} = 28$$

$$x = \pm\sqrt{28} = \pm\sqrt{4 \cdot 7} = \pm 2\sqrt{7}$$

$$4x^{2} + 20 = 16$$

$$4x^{2} = -4$$

$$x^{2} = -1$$

$$x = \pm\sqrt{-1} = \pm i$$

$$\frac{3}{4}(x+1)^{2} = 10$$

$$(x+1)^{2} = \frac{40}{3}$$

$$x+1 = \pm \sqrt{\frac{40}{3}}$$

$$x+1 = \pm \frac{\sqrt{40}}{\sqrt{3}}$$

$$x+1 = \pm \frac{2\sqrt{10}}{\sqrt{3}} = \pm \frac{2\sqrt{10}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \pm \frac{2\sqrt{30}}{3}$$

$$x = -1 \pm \frac{2\sqrt{30}}{3}$$

$$2x^{2} = 5x^{2} + 24$$

$$-3x^{2} = 24$$

$$x^{2} = -8$$

$$x = 2\sqrt{2}i$$

3-03 Solve Quadratic Equations by Graphing and Finding Square Roots (3.1) A fruit stand charges \$3 per pound of apples and sells 20 pounds each day. They try dropping the price by \$0.50 and sell 5 more pounds a day. How much should the

• A fruit stand charges \$3 per pound of apples and sells 20 pounds each day. They try dropping the price by \$0.50 and sell 5 more pounds a day. How much should the fruit stand charge to maximize their daily revenue? What is their maximum daily revenue?

Revenue is price × number sold

$$R = p \times s$$
$$p = (2 - 0.1x)$$
$$s = (20 + 5x)$$

Where *x* is the number of times the price is dropped.

 $R = (3 - 0.5x)(20 + 5x) = 60 + 5x - 2.5x^2 = -2.5x^2 + 5x + 60$ Maximum at vertex

$$x = -\frac{b}{2a}$$
$$x = -\frac{5}{2(-2.5)} = 1$$
$$R = -2.5(1)^{2} + 5(1) + 60 = 62.50$$

They should lower the price one time to \$2.50 per pound to get a revenue of \$62.50

 $= x^2 + 6x + 9$

Add $\left(\frac{8}{2}\right)^2 = 4^2 = 16$ to get a perfect square or $(x + 4)^2$

It already is

$$x^{2} + 6x + \left(\frac{6}{2}\right)^{2} = 16 + \left(\frac{6}{2}\right)^{2}$$

$$x^{2} + 6x + 32 = 16 + 9$$

$$(x + 3)^{2} = 25$$

$$x + 3 = \pm 5$$

$$x = -3 \pm 5$$

$$x = 2, -8$$

3-04 Solve Quadratic Equations by
Completing the Square (3.3)
• Solve
$$x^2 - 18x + 5 = 0$$

$$x^{2} - 18x + 5 = 0$$

$$x^{2} - 18x = -5$$

$$x^{2} - 18x + 9^{2} = -5 + 9^{2}$$

$$(x - 9)^{2} = 76$$

$$x - 9 = \pm\sqrt{76}$$

$$x = 9 \pm 2\sqrt{19}$$

• Solve $2x^2 - 11x + 12 = 0$

$$2x^{2} - 11x = -12$$

$$x^{2} - \frac{11}{2}x = -6$$

$$x^{2} - \frac{11}{2}x + \left(-\frac{11}{2}\right)^{2} = -6 + \left(-\frac{11}{2}\right)^{2} \Rightarrow \left(-\frac{11}{2}\right)^{2} = \left(-\frac{11}{4}\right)^{2} = \frac{121}{16}$$

$$\left(x - \frac{11}{4}\right)^{2} = \frac{25}{16}$$

$$x - \frac{11}{4} = \pm \frac{5}{4}$$

$$x = \frac{11}{4} \pm \frac{5}{4} = \frac{11 \pm 5}{4} = 4, \frac{3}{2}$$

- **3-04 Solve Quadratic Equations by Completing the Square (3.3)** • Writing quadratic functions in standard Form • $y = a(x - h)^2 + k$ • (h, k) is the vertex 1. Start with general form 2. Group the terms with the x3. Factor out any number in front of the x^2 4. Add $\left(\frac{b}{2}\right)^2$ to both sides (inside the group on the right) 5. Dewrite as a perfect ensure
 - 5. Rewrite as a perfect square
 - 6. Subtract to get the *y* by itself

2. $y = (2x^{2} + 12x) + 16$ 3. $y = 2(x^{2} + 6x) + 16$ 4. $y + 2(9) = 2(x^{2} + 6x + 9) + 16$ 5. $y + 18 = 2(x + 3)^{2} + 16$ 6. $y = 2(x + 3)^{2} - 2$ Vertex is at (-3, -2) -2 is the minimum for this function Find the max or min by completing the square to find the vertex

3-05 Solve Quadratic Equations using the Quadratic Formula
$$(3.4)$$

• Work with a Partner: $(x + \frac{b}{2})^2 = \frac{b^2 - 4ac}{2}$

• Work with a Partner: Solve $ax^2 + bx + c = 0$

•
$$ax^2 + bx = -c$$

•
$$x^2 + \frac{b}{a}x = -\frac{c}{a}$$

• $x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a}$
• $\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{4ac}{4a^2}$

•
$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

• $x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$
• $x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$
• $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$ax^{2} + bx + c = 0$$

$$x^{2} + \left(\frac{b}{a}\right)x + \left(\frac{c}{a}\right) = 0$$

$$x^{2} + \left(\frac{b}{a}\right)x = -\left(\frac{c}{a}\right)$$

$$x^{2} + \left(\frac{b}{a}\right)x + \left(\frac{b}{2a}\right)^{2} = -\left(\frac{c}{a}\right) + \left(\frac{b}{2a}\right)^{2}$$
perfect square
$$\left(x + \left(\frac{b}{2a}\right)\right)^{2} = -\frac{c}{a} + \frac{b^{2}}{4a^{2}}$$

$$x + \left(\frac{b}{2a}\right) = \pm \sqrt{\frac{-4ac+b^{2}}{4a^{2}}}$$

$$x = -\frac{b}{2a} \pm \sqrt{\frac{b^{2}-4ac}{4a^{2}}}$$

$$x = \frac{(-b \pm \sqrt{b^{2}-4ac})}{2a}$$

Divide by *a* to get a = 1 Add –(c/a) to get x's by self Add the square of half of middle to get Factor left Square root Subtract Simplify

3-05 Solve Anadratic Equations using the Anadratic Formula (3.4) • $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

- This is called the **quadratic formula** and always works for quadratic equations.
- The part under the square root, **discriminant**, tells you what kind of solutions you are going to have.
 - $b^2 4ac > 0 \rightarrow$ two distinct real solutions
 - $b^2 4ac = 0 \rightarrow$ exactly one real solution (a double solution)
 - $b^2 4ac < 0 \rightarrow$ two distinct imaginary solutions

3-05 Solve Quadratic Equations using the
Quadratic Formula (3.4)
• What types of solutions to
$$5x^2 + 3x - 4 = 0$$
?
• Solve $5x^2 + 3x = 4$

 $b^2 - 4ac = 3^2 - 4(5)(-4) = 9 + 80 = 89 \rightarrow$ two distinct real roots

Put in standard form $\rightarrow 5x^2 + 3x - 4 = 0$ Quadratic formula $\rightarrow x = \frac{(-3\pm\sqrt{32-4(5)(-4)})}{2(5)}$ Simplify $\rightarrow \frac{-3\pm\sqrt{89}}{10}$

3-05 Solve Quadratic Equations using the
Quadratic Formula (3.4)
• Solve
$$4x^2 - 6x + 3 = 0$$

$$x = \frac{4x^2 - 6x + 3 = 0}{\frac{6 \pm \sqrt{(-6)^2 - 4(4)(3)}}{2(4)}}$$
$$x = \frac{\frac{6 \pm \sqrt{36 - 48}}{8}}{\frac{8}{x}}$$
$$x = \frac{\frac{6 \pm \sqrt{-12}}{8}}{\frac{8}{x}}$$
$$x = \frac{\frac{6 \pm 2\sqrt{3}i}{8}}{\frac{6 \pm 2\sqrt{3}i}{8}}$$
$$x = \frac{3 \pm \sqrt{3}i}{4} \text{ (reduce top and bottom by 2)}$$

00

36

$$ax^{2} - 12x + c = 0$$

Discriminant with 1 real solution
$$b^{2} - 4ac = 0$$
$$(-12)^{2} - 4ac = 0$$
$$144 = 4ac$$
$$36 = ac$$
Sample Answer: $a = 9, c = 4 \rightarrow 9x^{2} - 12x + 4 = 0$
Discriminant with two imaginary solutions
$$b^{2} - 4ac < 0$$
$$(-12)^{2} - 4ac < 0$$

0

 $(-12)^2 - 4ac < 0$ (-12)² - 4ac < 0 144 < 4ac 36 < ac Sample Answer: a = 10, c = 5 → 10x² - 12x + 5 = 0

3-05 Solve Quadratic Equations using the Quadratic Formula (3.4)

Real life problems

- The height of an object that is hit or thrown up or down can be modeled by
- $h(t) = -16t^2 + v_0t + s_0$
- where v_0 is the initial velocity (up +, down –), and s_0 is the initial height

• Choose the Best Method to Solve a Quadratic Equation

3-06 Solving Quadratic Equations

To most efficiently solve a quadratic equation,

- 1. If x appears only once and it is squared—either x^2 or $(x k)^2$ solve by taking square roots.
- 2. If both x^2 and x appear, make the equation equal to zero and...
 - a. Try solving by factoring.
 - b. If it cannot be factored quickly, solve by completing the square or the quadratic formula.
 - c. Graphing is usually only as a last resort for complicated problems.

Solve
•
$$x^2 + 6x + 5 = 0$$

• $3x^2 - 12 = 5x$
• $3x^2 - 12 = 5x$

Factor

L

$x^2 + 6x + 5 = 0$
(x+5)(x+1) = 0 x+5 = 0 or x+1 = 0 x = -5 or -1
$3x^2 - 12 = 5x$ $3x^2 - 5x - 12 = 0$
(3x + 4)(x - 3) = 0 3x + 4 = 0 or x - 3 = 0 $x = -\frac{4}{3} \text{ or } 3$

Factor

3-06 Solving Guadratic Equations by Any
Method (Review)
•
$$4x^2 = 375 - x^2$$
 • $x^2 + 5x - 7 = 0$

$$4x^2 = 375 - x^2 5x^2 = 375$$

Square roots

$$x^2 = 75$$
$$x = \pm 5\sqrt{3}$$

$$x^2 + 5x - 7 = 0$$

Try factoring (doesn't work) Use quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$x = \frac{-5 \pm \sqrt{5^2 - 4(1)(-7)}}{2(1)}$$
$$x = \frac{-5 \pm \sqrt{53}}{2}$$

Factor

 $3x^2 = 54x$

$$3x^{2} - 54x = 0$$

$$3x(x - 18) = 0$$

$$x = 0 \text{ or } x - 18 = 0$$

$$x = 0 \text{ or } 18$$

3	-07 Solve Anadrastic I	requalities (3.6)	
• Solve inequalities in one variable. • $p^2 - 4p \le 5$			
1.	Make = 0		
2.	Factor or use the quadratic formula to find the zeros		
3.	Graph the zeros on a number line (notice it cuts the line into three parts)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
4.	Pick a number in each of the three parts as test points		
5.	Test the points in the original inequality to see true or false		
6.	Write inequalities for the regions that were true		
•	1. $p^2 - 4p - 5 \le 0$		
	2. $(p-5)(p+1) \le 0$		

1. $p = 4p = 3 \le 0$ 2. $(p - 5)(p + 1) \le 0$ Zeros are 5, -1 4. test points = -2, 0, 6 $-2 \rightarrow 4 - 4(-2) \le 5 \rightarrow 12 \le 5$ false $0 \rightarrow 0 - 4(0) \le 5 \rightarrow 0 \le 5$ true $6 \rightarrow 36 - 4(6) \le 5 \rightarrow 12 \le 5$ false 6. middle region true so $-1 \le p \le 5$

Factor

$$x^{2} - 4x - 45 > 0$$
$$(x + 5)(x - 9) > 0$$

 $x^2 - 4x > 45$

Zeros

$$x + 5 = 0 \text{ or } x - 9 = 0$$

 $x = -5 \text{ or } 9$

Graph and pick test points (-6, 0, 10) Test points -6: $(-6)^2 - 4(-6) > 45 \rightarrow 60 > 45$ true 0: $(0)^2 - 4(0) > 45 \rightarrow 0 > 45$ false 10: $(10)^2 - 4(10) > 45 \rightarrow 60 > 45$ true Solution

$$x < -5 \text{ or } x > 9$$

3-07 Solve Quadratic Inequalities (3.6)

- Or you could also solve the quadratic inequality in one variable by graphing the quadratic
 - 1. Make the inequality = 0
 - 2. Plot points on a number line
 - 3. Quick graph
 - a. When the graph is below the *x*-axis; ≤ 0
 - b. When the graph is above the *x*-axis; ≥ 0

 $2x^2 + 4x - 6 \le 0$ when $-3 \le x \le 1$ $2x^2 + 4x - 6 \ge 0$ when $x \le -3$ or $x \ge 1$

 $x^2 + x - 20 > 0$ Factor (x+5)(x-4) > 0Zeros x + 5 = 0 or x - 4 = 0x = -5 or x = 4Plot the zeros Sketch quick graph of $x^2 + x - 20$ Opens up Because > 0, choose the x-values where the graph is above the x-axis. x < -5 or x > 4

Factor

$$(2x+1)(-x-4) \ge 0$$

 $-2x^2 - 9x - 4 \ge 0$

Zeros

$$2x + 1 = 0 \text{ or } -x - 4 = 0$$
$$x = -\frac{1}{2} \text{ or } x = -4$$

Plot the zeros

Sketch quick graph of $-2x^2 - 9x - 4$

Opens down

Because ≥ 0 , choose the *x*-values where the graph is above the *x*-axis.

$$-4 \le x \le -\frac{1}{2}$$